

SORUlARE ENGINEERING LABORATORY SERIES SEL-81-0’

AUTOMATED COLLECTION OF
S GlNEERlNG DATA IN

E ENGl EERING
LABORATORY (SEL)

SEPTEMBER 1981

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greerlbeli Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion, Goddard Space Flight Center (NASA/GSFC) and created
f o r the purpose of investigating the effectiveness of
software engineering technologies when applied to the
development of applications software. The SEL was created
in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer'Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
a l s o issued as Computer Sciences Corporation document
CSC/TM-81/6222.

The primary contributor to this document is

Arthur Green (Computer Sciences Corporation)

Other contributors include

William Decker (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771

ii

e

ABSTRACT

This document examines the collection of software engineer-
ing data in the Goddard Space Flight Center (GSFC) Software
Engineering Laboratory (SEL). The current manual collection
of data via software engineering forms is evaluated with re-
gard to what can and cannot be automated. Top level func-
tional requirements for an automated sysfem for the collection
of software development statistics are presented.

GE IS
ALlTY

iii

TABLE OF CONTENTS

-1 " i

i

Section 1 . Introduction 1-1
. Section 2 . Overview of the SEL Data Collection

Process 2-1
2.1 SEL Forms 2-1
2.2 SEL Data Collection and the Software

Development Process 2-2
2 .. 3

Data Collection 2-2 Special Considerations in Automating SE

Section 3 . SEL Data Sources for Automatic
Extraction 3-1

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Accounting Information
Keyboard Monitor
VAX Object Module Analyzer
Requirements Analysis Tools (MEDL.R.
PSL/PSA)

Programmer Workbench
TextEditors
Program Design Languages (PDLs)
Utilities
Linker/Task Builder Statistics
Compiler Statistics
Directory Information
FORTRAN Static Source Code Analyzer
Program (SAP)

3-1
3-3
3-6

3-6
3-8
3-8
3-9
3-9
3-10
3-13
3-15

3-19

Section 4 . SEL Data That Cannot Be Extracted
Automatically 4-1

4.1 Subjective Data 4-1
4. 2 Manual Processes 4-5
4.3 Valid Other Activities 4-5

Section 5 . Functional Requirements 5-1
5.1 Operational Considerations 5-1

5.1.1 Time and Space Utilization 5-1
5.1.2 Event Monitoring 5-2

5.2 Data Collection in the SEL Hardware
Environment 5-2

5.3 Summary . 5-3

iv

TABLE OF CONTENTS (Cont’d)

Section 6 - Conclusions and Recommendations
Appendix A - Sample SEL Software Engineering Forms
References

0

V

6-1

LIST OF ILLUSTRATIONS

Figure

2-1
3-1

3-2
3-3

3-4
3-5
3-6
3-7
3-8
3-9
3-10

3-11

Typical SEL Software Development Life Cycle.
VAX Accounting File and Termination Message
Contents

VAX Accounting File Information
Output From the VAX Object Module Analyzer

(ANALYZE)
Output From the DIFF Utility
Output From the DISKUSE Utility
Sample Link Statistics
Sample Compiler Data
Sample Full Directory Listing
System File Analyzer Output
Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP)

Sample Output From the FORTRAN Static Source
Code Analyzer Program (SAP)

. .

. * . .

.
* .

. .

. .

2-3

3-4
3-5

3-7
3-11
3-12
3-14
3-16
3-17
3-18

3-20

3-26

LIST OF TABLES

Table

3-1 Sources of Online Software Engineering Data. . . 3-2
4-1 Data From the SEL Forms That Cannot Be

Automatically Extracted 4-2

vi

SECTION 1 - INTRODUCTION

Software engineering (SE) is a discipline that seeks to pro-
vide a more scientific approach to computer software design
and development. In order to learn how to develop software
more scientifically in the Goddard Space Flight Center (GSFC)
Mission Support Computing and Analysis Division (Code 580)
environment, the Software Engineering Laboratory (SEL) was
created t'o measure and evaluate the effects of various
methodologies in current use (Reference 1).

The stated goals of the SEL can be broken down into the fol-
lowing three major categories:

1. Monitor current project progress

2. Collect SE data to determine how software is being
developed

3 . Evaluate the effects of various methodologies across
several GSFC Code 580 projects, with regard to their
impact on software development

One of these major functions is the collection and analysis
of SE data. During the last 5 years, the SEL has attempted
to collect SE data pertinent to the design and development
of several major software systems. The goal of this study
has been to determine areas where time and effort has been
unproductive and where improved methodologies might be em-
ployed to produce a better product.

The data collection instrument consists primarily of a set
of six software engineering forms which are filled out on
a regular basis by programmers and systems designers involved
in a given development project. The forms are supplemented
by computer accounting information, code analyzers, personal
interviews, and subjective management data.

1-1

To date, the data collection and analysis have-proven to be
costly, time consuming, and subject to inaccuracies. This
is primarily due to the manual collection and preparation
of the data for entry into a data base management system
(DBAM) which performs report generation but very little an-
alysis.

The manual data collection process is a slow and tedious
process in which many people (including managers, program-
mers, analysts, and support personnel) must complete forms,
validate the data, and enter SE data into the data base.
There is no feedback mechanism for analyzing the data and
folding the results back into the projects. Also, human
factors, such as programmer motivation (or lack of it), play
an important part in the accuracy of the data collected.

Because of these drawbacks to manual data collection, auto-
matic extraction of SE data in the SEL would be very desir-

be required, the time currently-spent filling out the forms
. able. Even though validation of the collected data would

and entering the data would be saved, since the data would
be collected and stored on the same machine that the develop-
ment effort is using. There would be virtually no influence
from human factors on the data collected in an automatic
mode.

The purpose of this document is to analyze this possibility.
Section 2 gives an overview of the current SEL data collec-
tion process. Section 3 describes the SEL data that could
be automatically collected, and Section 4 discusses the types
of SEL data that could not be extracted automatically. Some
top-level functional requirements for an online automated
data collection system are given in Section 5, and Section 6
presents the conclusions and recommendations resulting from
this study.

1-2

SECTION 2 - OVERVIEW OF THE SEL DATA COLLECTION PROCESS

This section gives an overview of the data collection proc-
ess followed in the SEL. Included in the overview is a brief
description of the software engineering forms used and the
relationship of data collection to the software development
process. Also given is a brief discussion of some special
consiaerations in automating the SEL data collection.

2.1 SEL FORMS

The data collection system which has evolved in the SEL con-
sists of a set of six reporting forms which are completed
at various stages of software development. These forms are
shown

0

0

0

0

0

0

in Appendix A and are summarized below.

General Project Summary--This form defines the scope
of the software development problem.

Component Summary--This form describes the structure
of each component (e.g., module or routine) of the
software system under study.

Resource Summary--This form provides manpower charges
and computer usage statistics.

Component Status Report--This form details the activ-
itites of the programmer/designer on each component
of the software system.

Run Analysis--This form provides the results of a
given program execution.

Change Report--This form gives the reason for and a
description of each change to the software system.

A s mentioned in Section I, these forms are filled out on a
regular basis by the programmers and systems designers in-
volved in a given development project. (See Section 2.1 of
Reference 2 for details of the SEL data collection and the

' software engineering forms.)

2-1

2.2 SEL DATA COLLECTION AND THE SOFTWARE DEVELOPMENT
PROCESS

The SEL data collection procedure attempts to measure the
total resources of the software development process as it
exists in the SEL environment. (See Figure 2 - 1 for an il-
lustration of a typical SEL software development life cycle.)
In order for the data collection procedure to be effective,
it must monitor development activities throughout the entire
software life cycle and not just during aesign and implemen-
tation.

The software development process is divided into a number
of serial and distinct functions linked by informal, loosely
coupled communication channels between the requirements,
design, coding, testing, integration, operation, and main-
tenance phases. Most of the focus to date has been on mon-
itoring the requirements, coding, and testing phases, with
very little effort directed to monitoring the design and
maintenance phases.

The existing component phases need to be connected in a more
systematic manner. In this way, each area of the development
process can be classified according to the type and amount of
resources it requires. If an accurate profile of development
activities is to be obtained, items such as the programmer's/
designer's use of core, central processing unit (CPU) time,
and input/output (I/O) activity must be logged during the
activity. The types and number of interrupts initiated by
the user and their frequency give some indication of devel-
opment activities in an interactive environment, but they
are inadequate when batch procedures are evoked.

2.3 SPECIAL CONSIDERATIONS IN AUTOMATING SE DATA COLLECTION

The degree of automation of data collection is dependent on
the following: (1) the sources of data (real and potential)

2-2

d
a,

a,
k

-I-,
s

GI w m

d
I
N

a,
k
3
6,
-4
Er

2-3

*

‘1

and (2) the level of system support to be given to the de-
signers and developers of an automated system. Ideally, the
data collection should be done at the highest system level
possible, rather than as some invoked procedure or called
application system. This ensures the uniform application of
data collection for all users.

Another special consideration in automating SEL data collec-
tion is the case of subjective data. Because software de-
velopment is primarily a human activity, certain types of
subjective information are desirable. However, it is nec-
essary to decouple the subjective data from the automated
collection process or, where possible, to restate the goals
so that they can be specified objectively. (Subjective data
are discussed further in Section 4.)

2-4

i
. I

C '

b

SECTION 3 - SEL DATA SOURCES FOR AUTOMATIC EXTRACTION

One of the goals of this document is to define the type of
SE data that can be collected automatically in the SEL. This
section discusses those types of data.

- The computers available to SEL users are the Digital Equip-
ment Corporation (DEC) PDP-11/70 and VAX-11/780. These com-
puters are rich in sources of data in their own right. In
addition, several software tools and utilities already exist
in the SEL which provide other sources of SE data. Table 3-1
gives a lengthy list of current and potential sources of
online SE data in the SEL. The remainder of this section
summarizes the currently available sources, in some cases
providing examples and brief descriptions.

The types of data which could be collected automatically are
broken down into the following categories:

0

0

0

0

0

e

9

0

e

0

Accounting information
Keyboard monitor
VAX object module analyzer
Requirements analysis tools (MEDL-R, PSL/PSA)
Programmer workbench
Text editors
Program Design Language (PDL)
Utilities
Compiler and linker statistics
FORTRAN Static Source Code Analyzer (SAP)

3.1 ACCOUNTING INFORMATION

Accounting routines generally provide information about re-
source utilization (such as CPU and 1/0 usage, direct-access
volume usage, and page faults) because their primary purpose
is to provide a basis for billing projects. However, most
systems allow for user-written accounting routines which col-
lect data for later analysis.

3-1

1.

2.

3.

4 .

5.

6.

7 .

8.

9.

1 0 .

11.

12.

1 3 .

1 4 .

1 5 .

1 6 .

1 7 .

1 8 .

1 9 .

20.
2 1 *

22.

23.

24.

25.

26.

27.

28.

Table 3-1. Sources of Online Software Engineering Data

Compiler/asembler statistics (number and type of coding
error)
Linker/task builder
Online debugging tools (ODT)
Accounting files
Software engineering tools (e.g.,‘ PSL/PSA, MEDL-R, CSMR,
FINREP, MARS)
System error l o g
Overlay descriptor files (i.e., who calls whom)
Automated Program Design Languages (e.g., Caine, Faber,
and Gordon)
Text editors (e.g., ODC)
Keyboard monitors (examine each keyboard entry for soft-
ware engineering information)
Programmer workbench
Performance measurement and monitoring (e.g., Boole and
Babbage)
Login/logout information
System management records
System and user-developed utilities (e.g., PIP, COPY,
DIFF)
Financial tapes
User directory information (good source of change infor-
mation)
Source analyzers (e.g., SAP)
Resource estimators (e.g., Price S, Doty, SLIM, GRC)
System services (SYSSGETJPI, GETTSK)
Error trapping mechanisms (exit handlers)
Complexity functions (e.g., Halstead measures)
Maintenance procedures
Data bases
Configuration management systems (CAT)
Formal test procedures
Dump/trace facilities
Cross reference programs

3-2

Since the interface with the system already exists on both
the SEL PDP-11/70 and VAX-l1/780 computers, this area pro-
vides one of the most reliable and easily implemented methods
of obtaining resource utilization information on a project-
by-project basis. Data set information is already recorded
whenever a file is opened, scratched, renamed, closed, or
processed by end of volume. A SEL enriched accounting pro-
cedure could form the basis around which a more comprehensive
and elaborate data collection scheme might be built.

The types of information currently available in the VAX-l1/780
accounting file are shown in Figures 3-1 and 3-2 . Similar
types of information are available on the PDP-11/70.

3.2 KEYBOARD MONITOR

Both the VAX-11/780 and the PDP-11/70 provide collections of
routines which can be linked with user programs to provide
the capability of processing command lines dynamically. The
system facilities include, for example, the following:

Routine
Name Description Function

GCML Get command line Retrieves keyboard

CSI Command string inter- Takes command lines
polator from the GCML input

input

buffer and parses them

This set of software can be used to develop keyboard monitors
that examine each line entered at a terminal f o r SE-related
data. When it exists, the SE data would be extracted and
stored for later processing and analysis. Because of the
high volume of data obtained in this manner, rigorous screen-
ing and filtering techniques might be required to extract
pertinent SE data. It is, however, an area that warrants
further investigation.

3-3

1.
2.
3.
4.

5.
6.
7 .
8.
9.

10.
11 *
12.
13.

14.

15.
16.
1 7 .
18.
19.
20.

Message type
Message 1 ength
Final ex i t s ta tus
Process ident i f icat ion

Job i d e n t i f i cation
Termination time
Account name s t r ing
User name string
CPU time in 10 ms units
Total page f a u l t s
Peak paging f i l e usage
Peak working set size
Count of buffered 1/0
operations
C o u n t of d i rec t 1/0
operations
Count o f volumes mounted
Login time
PID of subprocess owner
Termination message length
Job name (batch)
Queue name

(PID)

21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31 .
32.

33.
34.
35.

36.
37 *
38.
39.
40.

Symbiont page count
Symbiont QIO count
Symbiont. GET count
Time job, was queued
Name of p r i n t j o b
Name of p r i n t queue
Length of p r i n t accounting
record
User message area
Job termination
Batch job termination
Interactive j o b i nformat i on
Login f a i lu re process
termination
Print job accounting
Inserted message
Insert message i n t o
accounting f i l e
Create a new account f i l e
Enable accounting
D i sable accounting
Enable selection accounting
Disable sel ection accounting

F i g u r e 3-1. VAX Accounting F i l e and Terminat ion
Message Contents

t
f

3-4

m
.‘I
r.
ri

.u I.> m m P P
17

’ ‘1
0

w
h

bl
0 r(

0
Q

4.

C l -

0 0

-om - ti
ri - P O

m m
C l 6.
6.
m

0
bi
P h

m IC1
c m . .
.om
I ri
r.P

00
bl 0.
ar ci
ri

0000

Q m UY CJ
w m I,? ri
* m .o - C l h

lllhQ.0
m o o . -
w r. TI c i -. m ci

o m m
r. I l l -
00.Q - C I

*-Oh0 r. r. o ri

o u ~ m
ri m

ri

. . . .

hM0.-

r . u . 4 u - J
* P

r i m . + +

0 0

n m

t-4

v k-i
c. “1

m h
P O
Q 0.
m ri

O P

I . 0
-OM

m m

,-I

m h
m h
F\ bl
r(I?
C I

. .

ti, m
0 . -
cor.
4. C l

0 0

0. w
m m
-.o ”

0 0
0 u1
- 0 0.4

d.4
m.4
l i l m b m

O . h - ri
rt Q
. .

9 . W
4

- 4 . 0
- 0 .

lil
Q c i

0

m
6.
c i
4:

4
01
0
r>

m
w
“I

Q
m
m.
IJ?

Q
m
0
L1

0 0 0 3

ci o
P-4

0.0

CI
.om

In -0
I l l 0 P.4

r. n
4.0

m r r
. .

m - m 111
m -

0 0 0 0 0 0

*

3
. i

I
P)

P
Ir(

m

Q
10
rl

0
0.
C I
YI

r.
0.

0.
ci

m
ri

0
.a
0
ll3

0.

0
h

4
I l l
ri

I-.
0.

m
0.

0. 0
bl

m
CI

M

* 03
m
ci

01
h
M
m

W
IT l-4

I-
I

3-5
IGINAL PAGE IS

LlTv

3.3 VAX OBJECT MODULE ANALYZER

The VAX object module analyzer (ANALYZE) provides a descrip-
tion of the contents of an object file or the symbolic infor-
mation appended to a shareable image file. In describing
the records, ANALYZE also identifies errors if they exist.
This information is less amenable to further analysis, be-
cause its content is sketchier than that given by source
code analysis. It is given here as an additional source of
SE data.

Figure 3 - 3 presents an example of the output from the ANALYZE
option.

3 - 4 REQUIREMENTS ANALYSIS TOOLS (MEDL-R, PSL/PSA)

Requirements analysis encompasses all aspects of software
development prior to actual system design. The SEL has
conducted some ground-breaking studies in this area by ex-
amining currently available requirements packages such as
the Problem Statement Language/Problem Statement Analyzer
(PSL/PSA, Reference 3) and the Multi-Level Expression Design
Language - Requirements (MEDL-R, Reference 4) . Computer-
aided tools such as these can be modified and enhanced to
extract relational and hierarchical data from their associ-
ated data bases.

The basic concepts in automated requirements analysis are
well documented (see References 5, 6 , and 7) . Requirements
analysis seeks to ensure correctness of the end product,
unambiguity, consistency, and completeness. If a completely
automated data collection system is to be developed, more
work must be done to refine and/or develop more tools in
this area.

3-6

>. >. >. > $. >.). >. > > RECORD 2 I S A LANGUAGE PROCESSOR SUB-HDR 2 4 BYTES LONG
A S C I I DATA I S :

V A X - 1 1 FORTRAN V2.2-40

C 0 M MA N D 2 I S STPBB (4) STACK= 4
P - SECTION NUMBER 7 0
VALUE STACKED = 0 (DEC) 0 (OCTAL)

0 (HEXADECIMAL)
COMNAND 3 IS STOPIDR (27) STACK= 5
COMMAND 4 I S STORE IMMEDIATE i 12 (DEC) BYTES STACK? 0
IMMEKIIATE BYTE STREAM (I N HEX) FOLLOWS:

0 1 2 3 4 5 6 7 8 ?

0 OB 9 4 93 54 93 51 31 24 4D 4 1
--.

10 451 4 E

Figure 3-3. Output From the VAX Object
Module Analyzer (ANALYZE)

3-7

3.5 PROGRAMMER WORKBENCH

The programmer workbench (PWB) concept is generally regarded
as a highly specialized computing facility dedicated to sat-
isfying the needs of software developers. In principle, it
is a front end which provides a convenient work environment
and a uniform set of programming tools across machine bound-
aries. PWBs have been configured for many diverse hardware
environments and have supported development for many target
computers.

Recently, GSFC Code 5 8 0 has embarked upon the development
of phase 1 of a PWB tailared specifically for the Code 580

software development environment (Reference 8) . It is sim-
ilar to the well-known Bell Telephone Laboratories PWB/UNIX
(Reference 9) . However, because of the continuing need to
collect statistics which accurately describe the SEL environ-
ment, the development of Code 5 8 0 PWB phase 2 provides an
excellent opportunity to integrate automated development
with automated data collection. The tools and methods used
in conjunction with the Code 5 8 0 PWB should'place high
emphasis on SE data collection.

3 . 6 TEXT EDITORS

Text editors are available in several forms in the SEL VAX/
PDP environments. Editors are one of the primary means by
which data are created and modified in the development of
software. If detailed creation and change information is
to be collected, one viable option is to provide text editors
that have been modified to extract. SE data. Modules'which
provide summaries of changes made to a given module could
easily be coupled with the Code 580 PWB to extract data
from interactive sessions and record it for later process-
ing or inclusion in the SEL SE data base.

3-8

Some work has already been performed in this area at GSFC.
An Online Data Collector (ODC) has been developed, which is,
in fact, an SE-related editor (Reference 10).

3.7 PROGRAM DESIGN LANGUAGES (PDLS)

Software development is still largely a manual process.
There has been relatively little effort devoted to design
validation and analysis. Top-down, structured design has
contributed to the formulation which must precede design
automation, i.e., it must be known just what constitutes
design. Although some initial work has been done by Freeman
(Reference ll), there is still little organized knowledge of
what a software designer does.

-

Flow charts and baseline diagrams still remain as the prin-
ciple method for representing software designs. The machine
processable design representation of the Caine, Faber, and
Gordon Program Design Language (PDL) system is one of the
few automated design tools on the market (see Reference 12).

Once more of the design information is in machine-readable
form, more can be done to develop procedures for automatic-
ally extracting SE data for the design process. However,
it is still not clear how much can be done to formalize soft-
ware design. This is an important area which needs to be
investigated more thoroughly before significant progress can
be made towards automated collection of software design
statistics.

3.8 UTILITIES

The SEL defines a utility as any component that is generated
for the purpose of staisfying some general support function
required by other applications software. This class of
software contains programs that do not fit into any other
category in the software development life cycle.

3-9

-I

The SEL PDP-11/70 and VAX-11/780 both support forms of the
Peripheral Interchange Program (PIP), which is the primary
data manipulation software in the SEL. Utilities such as PIP
usually provide statistical summaries on the results of the
operations performed or could easily be modified to do so.

Other SEL utilities, such as the VAX Difference Analyzer
(DIFF), the DISKUSE utility, and the locally developed FORTRAN
cross-reference program (XREF), are examples of the type of
support software that already exist in the SEL and that could
be incorporated into an automated statistics extraction and
reporting system. In the VAX environment, the DIFF utility
compares the contents of two disk files and creates a listing
(or file) of the records that do not match. A sample execu-
tion of the DIFF utility is shown in Figure 3-4 . The DISKUSE
utility provides data on storage requirements, sorted by
project and group. Sample output from this utility is given
in Figure 3 - 5 .

3.9 LINKER/TASK - BUILDER STATISTICS

The VAX-11/780 linker and the PDP-11/70 both provide data
on the structure and content of executable images and shared
global areas. The MAP option, when specified, generates
data on the following:

Module name
Object modules which comprise the image
Image sections
Symbols
Module address
Module lengths (size)
Line statistics
Module creation date
Language translator that created the module
Global sections referenced

3-10

F I L E S Y : C F D Y N + SRC I HPJ DL E R , F 0 R ; 3 3
4 s CHARACTEX TNAHEX (t) 9 PH &!&ME $17
4 9 CHARACTER I N P U T Y 8 0 r O U T P U T * 8 0 r T E ~ H I * ~ r T E R M O X ~

X 1 X X C * X C * $ * * t * * t * X r ~ f m x x
F I L E SY: CFDYN.FDY033HNDL

4 8 CHARACTER TFlAME#(C) rPRElAMEY13,HBX
4 9 CHARACTER IHPUTCSO r OUTPIJTlSOt rERH

aIXYY*Y***~****~r$XX11X$
* * * $ * * * X $ t C l * d t * l * X t X I 4 Y * C Y X
F I L E SY : C F IlYM. 8RT 3 HI1 DLEH , FOR i 33

5 3 INTEGERYT! ITHHnF(3),ILEN,JLEN,JFLAG
5 4 c

x * c x * x s x Y * * * * * ~ X x * X * ~ * ~ * * ~ * ~ ~
F I L E SY : CFDYEl . FDY03 IH?IriLER. FOR; 479

5 3 INTEGER*? I T h H A F (2) r II.EN? JLE?', JFLAG?MHXIJFLTt ICHAH
5 4 c

82
a3
84
US
86
87
88

9 0
91
?2
93
9 4
95
96
97
98
99

t o o
101
102
103
104
105
106
107
103

a9

C
C OPEN HAILBOX U N I T
c -

HAILPX = 3
OPEN C Ub! I T =MA I L HX r TYPE = ' NEW ' I NAME = ' 36 I I X U X t D A T ' r * REC 0 H D S I Z E = 1 0 7 ,: r F 0 R M = ' U 2FO R H A T T ED ')

C
C
C

C

10
C

C
C
C

20

30
C

C

LOAD ElAILHOX BUFFER

BUFFER(I1 = LOC
" 'YFED(2: : :FtAG
"'!FFER(3) = NARG
N c l K X = ::nL:dAH

DO 10 I = l r l ?
AUTFLE(1) = AUTFKL11)

IF(NARG.LE.0) CO TO 3 0

LOAD GLOBAL NAfiES I t ! HAILHOX BUFFER

a0 7 0 I-slrNFIRO
RUFF(1) = BLANK
CALL X T R A C T (% U A L (D A R S A Y (I)) , B U F F (I) ~ ~ L E N)

IF(IPASS.GT.1) GO TO 50

u * I x * * X * * ~ x L x * ~ ~ ~ ~ I l ~ ~ CB*****
F I I. E S Y : C F D Y N . F CY 0 3 1 H?rl DL E R F O S 3 4 7 9

82 WRITE(6,133) hFLAG KERROEr NUMARG
a3 123 FORMAT(' HEIDLER: JFLAfitKESRORrf4UHARG = ' ~ 3 1 1 0)
8 4 C
85 IF (IPASS.GT.1) GO TO 5
36 c

Figure 3-4. Output From the DIFF Utility

0

0

0

0

0

0

0

0

0

0

0

0

9

Sample

Number of virtual pages required
Base and ending addresses of program sections (PSECT)
PSECT attibutes
Library access
Symbol cross reference
COMMON block usage
Stack size
Image type
Storage requirements for image
Number of modules
Number of global symbols
Virtual memory allocated
Overlay descriptor

link output is provided in Figure 3-6.

3-10 COMPILER STATISTICS

The FORTRAN compiler options provide many items of data per-
tinent to the data collection process. The Storage Map
section summarizes information about memory allocation, and
the Program Section Summary describes module structure. The
Entry Point Summary lists all entry points and their addresses
and identifies the section function.

The compiler listing can be used to obtain the following
data :

0

0

0

0

0

0

0

0

0

Program sections
Entry points
Variables
Statement function
Arrays
Labels
Functions and subroutines called
Total memory allocated
Module names

3-13

a

PE'7POH"A'JC~ TNnICATURS PAGE FPUL7S CPU TIME ELAPSED T I P E .___-___-____-__-_-_-- I--------.- ---.---- ------------
CCVNANI? PRCCFSsING: :4 00:00:60.33 d o : o o : c 1 . 8 5
PASS 1: 7 7 3 oo:oo:n3.i0 00:00:87.44
D L L O ~ A T I ~ N / R E L O C ~ T f O N : 4.3 oo:oo:oo.in 00:00:no.s2
PAqS 2: 3 1 4 OO:OC:01.95 00:00:05.75
H A D I)ATA AFTER ORJeCT MODULE SYNOPSIS: 151 00:00:02.01 60:0@:02.11
SYwaCL TAbCE OUTPUT: in oo:oo:oo.o~. 00:00:00.17

POTAL Z'JV VALUES: 1315 O O : O O : O ~ . S ~ 00:00:17.84

U S I N G Y O P K T N G SET L I Y I T E B TO 3 d 0 PAGES AND 1 4 0 PLGFS OF D A ? A STOQAGE (EXCLUDING TMAGF)

TOTAL 'JUWSil 5 9 J 5 C T RECORDS READ (BOTH PASSeSI? 1455

3 9 1 1 BYl'PS Or DE*UG DATA WSRE WRITTEW,STARTiNC AT Vet' 75 WIT" R FLOCKS ALLOCATED
OF W I C H 5 7 0 AERY 1'4 LTBQRRIES A N D 136 WFRE DEBUG DRTA RXCORnS CtlNTAINIMG 4 2 5 5 BYTES

" NUM9ER OF Y0I)ULES EX'IRPCTED FXDLICITLY = 2
WITX 53 EXTRACTED TO RFSOLVE UNDEFINFD SYNBOLS

4 5 L I 3 9 4 R Y SEARCHES WE9E FrlR SYMROLS NOT I N THE LIBRARY SEARCHPD

A TOTAG OF o G T , O R ~ L SYWam, T P B L E P ~ C O R O S W P S WRITTFN

/XAP/EXEC=PARTST P A R T S T , G E T A D D I A L L O C , C ~ ~ ~ A ~ F , [F d Y N . u F L D 1 R I D ~ A S / ~ P T I O N S

Figure 3-6, Sample Link Statistics

3-14

0 Program section attributes
0 Module size
0 Compile time

Sample compiler data is shown in Figure 3-7.

3.11

Files maintained on the PDP-11/70 and VAX-11/780 are refer-
enced through directories. The directory for each user
contains the following information:

0

0

0

0

0

0

0

0

0

0

0

0

0

File protection
Size in blocks
Owner
Date and time created
Date and time last revised
Expiration date
File attributes
Record format
Record attributes
File organization
Total of in-use/allocated blocks
Number of files
Version numbers

Additionally, Digital. Command Language (DCL) commands and
system utilities such as SRD can be used to obtain sorted,
specialized subsets of data for a given user identification
code (UIC). A sample directory listing with the full option
is shown in Figure 3-8. The system file analyzer (SFA) can
also be used to display formatted dumps of disk files, as
shown in Figure 3-9.

3-15 E IS
LlrY

x

I I
I
I

I

1

I

I
I
1

I

C

6
a

C

U

$
<
a

I
3

(r
a

<

1

I b

!

!
i
!

8

I
1
4

I

!

!

1

I

a

!
1

<

;
d

I
I ;

!

!

I

I

)

!
i
1
1

I
I

la
c1
la
CI
k
a,

i-l

3-16 E
LI

a,

F
I

m

a,

5

DIRECTORY ,OPBl:CFDY~.FDY03.ALLOCl

ADDQ.FOR:lP

FILE PROTECTION:
FILE ODGASIZATIOY:

ATTPIPUTE4:
SECOPD FnRM9T:
D E C O R D AT'SaIRUTES:

ALLO.FdR:53

FILE PQOTECTION:
FILE ORGANIZATION:

!?ECORD FORYAT:
PECOaD ATTPIRUTES:

FIrjE ATTPISUTES:

ALCOC.FORfl11

FILE PROTECTION:
FILE ORGANIZATION:

QECORD FORMPT:
RECOQD ATTRIBUTES:

FILE ATTRIeUTES:

ALPHA.FORt1

FIfrE PROTECTION:
PILE OQGANIZATION:
VI5E 4TTRIBUTES:
QECORD FORHAT:
RECORD ATTFIRUTES:

AVAIL.FOR:5

FILE PROTECTION:
FILE ORGfiNIZATION:
PI'JE A7TRIRUTES:
RECORD FORMAT:
RECORD ATTQIRUTES:

RLDFTL.FfiRt2

FILE PROTECTION:
FILE OQG4NIZATION:
TILE ATTRIBUTES:
QECORD FORMAT:
QECORD ATTPIFIITES:

CKPAYE.FOR:28

FILE POOTECTJOM:

SIZE: 4/ 6 CREATED: 11-JUN-1981 19:08
niqNEp : r212,0a31 REVISED: 11-JUY-1991 19:09
FILE IF: (1005,8,0) EX D I R ES : < N @ V E SC: Er I FIE D>
SYdTFMtRWED, OWNER:RWED, GPOfIP:R'4Er I"ORL9:RC
SEOUSNTI4L
rlLl.Of ATIflM=6, FIXTE"ID=O
VARIPBIjE LENCTY
C AQR I AGE R CTU R\!

SIZE! 5 1 6 CREATEP: 1A-JUN-1981 17:32
?WVER: C212,0031 REVISET): 1S-JUN-1991 17:32
FILE ID: (1661,41 ,0) %XPIRES: < N O N E SPSCIFIEDZ
SYSTPM:RWED, OWNER:RWED, GROIlP:RWE, WOPLD:RE
5 EO U FN T I A L
aLGOCATI@N=6 EXTEMD=O
V & R I ~ ~ ~ I E LENGTY
C .& R R 7 A 6 E R FTU R ?

SIZE: 25/30 CREATED: 12-JUY-1981 18:23
C W N ER : C 2 ~ 2 r 0 0 3 3 REVISEI): 11-JUY-1981 18:24
FILE In: (1076,7,0) EXPIRES:,<NflNE SPECIFIT.D>
SYSTfi4:RWED, OYNER:RWED, GPOUPtRWE, VOPLr):RE
SEnUFNTIAL
4LCOf ATION=30 EXTENDZO
V4QIABlrE LENGTH
C A Q R 1 ACE RETURN

SIZE: 1/6 CRFATED: 9-JUL-1981 15:34
O W E R : C212,0031 REVISED: 9-JUL-t982 15:34
FI5E ID: C1151,13,0) SXPIRES: <ROME SPECIFILD>
SYSTPMtRWED, OWtJFR!RWED, GQ01'P:RWEnr W0RCD:RE

ALLOCATION=6 8 EXTENDZO
V A P I P 0 LE

SEQUENTIPL

LEN GT W
CARWrAGE RETURN

SIZE: 1 /6 CREATED: 26-MAY-1981 13:36
OWNER: 1212,0031 QEVISED: 20-MAY-J981 13:36
FILE XI?: (3 2 5 , A , 0 1 SXPIFES: <NOh!!E SPECIFIED>
SYSTEM:RWED, OWNFR:RWED, GP.OUP:RWE, WORtr?:QE
SEQUFNTIAL

VADIBB1.E LENGTH
CAPRIACE RETURh!

P LfiOCATION=6, FXTENDzO

SIZE? . 1/3 CREATED: 15-APR-1981 13:48
FWNER: c212,0033 REVISED: 15-APR-1981 14:03 (1)
FILE In: (3661 ,2 ,01 EXPIRES: <NONE SPECIFIED>

~ L C O C A T I O Y = ~ , FXTEND=O

SYSTFM:RWED, OWNER:RWED, GROUP?RWE, WO?LD:"E
SEQUPNTIAL

VARI9BtE LENCTW
CARRIAGE RFTURY

SIZE: 8/12 CREATED: 11-JUN-19Rl 19200
CIWNER : 1212 ,0631 REVISED: 11-JON-1981 19:OO (11
FILE In: (931 , i 4 , 0) EXPIRES: <NONE SIECIFIED,
SYSTFM?RYED, OWNFP:RWEn, GRO'!?:RWE, VCJRLq:RE

Figure 3-8 . Sample Full Directory Listing

3-17

Y

O R I G I ~ A ~ PAGE I:
OF POOR QUALITY

3947 OF68
36 Q024
(? 0000
6470
1060712 ,0000031
nus-2

0 naoo
0 0000
0 no00

FILE STZF:
FNn OF F T L E R L n C K :
ALGOCATEq S I T E :
FIgST FREE BYTE:

C R F k ? I q N DATE:
R E V I S I f l t J DATE:
E X P I P A T I O N DATE:

82 00006052
84 00000054
0 0000

9-S6P-1981 ! 8 ! 5 5 : 3 6 . 9 5
9-SEP-lQ81. 18:55:39.52

<NrJNr S P E C T F T E n >

F I L E P Q O T E C T I O N : SYSTCM?RWED, OWNER:RWED, GR0UP:RWEp WOPLD:RE

F I t E C V R R A C T E R I S T I C S : CONTTGUOUS-BEST-TRY

P I C E E Y T T N T C S) :
S T A R T I V G LOGTCAL 0LOfK NUMFIER: COUNT:

(1) 257562. 0003EDDE 93. 00000053

F i g u r e 3-9. System F i l e Analyzer Output

3-18

3.12 FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (SAP)

The FORTRAN Static Source Code Analyzer Program (SAP) auto-
matically produces statistics on occurrences of statements
and structures within a FORTRAN program (see Reference 1,3.)
Statistics, as well as figures of complexity, are gathered
on a module-by-module basis. The SE data which might be
obtained through this source are summarized in Figure 3-10.
A sample of the output from SAP is shown in Figure 3-11.

3-19

MODULE TYPE AND EXTERNAL COMMUNrCA~ION

e

e
e

e

e

e

e

e

e

e

e

e

e

Module type (main, subroutine, function, o r block da ta)
Number of entry points
Number of COMMON blocks referenced
Number of names in argument l i s t
Number of subroutine ca l l s
Number of subroutine names referenced
Number of functions called
Number o f function name referenced
Number of external names defined
Number of external 1 y def i ned modul es referenced
Number of arithmetic statement functions (ASFs) defined
Number of references t o ASFs
Maximum and average length of argument l i s t s i n references
t o subroutines and functions

COMMENTING OF MODULE

0

e

e

e
0

e

e .
e

e

Total number of lines of source code
Total number of comment l ines
Total number o f noncomment l ines
Length of prologue
Number of embedded comments (to ta l /pro1 ogue)
Number o f comments appearing a f t e r !
Number of blank comment 1 ines
Maximum and average length of nonprologue comment blocks
Maximum and average number of l ines between comments

STATEMENT BREAKDOWN

e Total number of noncomment statements
e Number and percentage of executable statements
e Number and percentage of nonexecutable statements

F i g u r e 3-10. S t a t i s t i c s From the FORTRAN S ta t i c Source
Code Analyzer Program (SAP) (1 of 6)

3-20

J

STATEMENT BREAKDOWN (Cont ' d)

0 Number and percentage of assignment statements*
0 Number and percentage of control statements*

Number and percentage of 1/0 statements*
Number and percentage of format statements*
Number and percentage of NAMELIST statements*
Number and percentage of da ta statements*
Number and percentage of specification statements*
Number and percentage of statement function definitions*
Number and percentage of subprogram statements*
Number and percentage of other statements
Number and percentage of undefined statements**

*As defined by IBM GC28-6515-9, IBM S/360 and S/370 FORTRAN-IV language
**Statements no t decodabl e by SAP

CONTROL STATEMENT BREAKDOWN

0 Number of IF - Number o f - Number of
0 Number of GO - Number o f - Number o f - Number o f

- Number o f
- Number of

statements:
logical IF statements
arighmetic IF statements
TO statements:
uncondi t ional GO TO statements
GO TO statements as object of IF statement
assigned GO TO statements
computed GO TO statements
different labels used as targets of GO TO statements

0 Number of DO statements
0 Number of ERR= constructs
0 Number of END= constructs
0 Number of RETURN statements:

- Number of normal RETURN statements - Number of RETURN i statements
0 Number of PAUSE statements.
0 Number of STOP statements

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (2 of 6)

3-21

F

CONTROL STATEMENT BREAKDOWN (C o n t ' d)

0 Total number of branches i n the code
0 Number of unconditional upward t ransfers
0 Number of nonFORMAT statements labeled
0 Number o f branches t o label specified i n an argument l i s t
0 Maximum and average level of DO loop nesting
0 Maximum and average number of statements i n a DO loop

ASSIGNMENT STATEMENT BREAKDOWN

0 Number of assignment statements
0 Maximum and average number of variables per statement
0 Maximum and average number of operators per statement

SPECIFICATION STATEMENT BREAKDOWN

0 Total number of variables named i n module
0 Number of variables referenced i n executable statements
0 Number of variable names referenced i n COMMON statements
0 Number of variable names referenced i n EQUIVALENCE statements
0 Maximum and average number of dimensions for arrays
0 Maximum and average number of characters i n variable name

SUBSCRIPT COMPLEXITY

0 Maximum and average subscript complexity (i .e . , number of
operators and parentheses)

MODULE TYPE STATISTICS (GLOBAL)

0 Total number of modules
0 Number of main programs
0 Number o f subroutines
0 Number of function modules
0 Number of block data modules

F igure 3-10. S ta t i s t ics From t h e FORTRAN S t a t i c Source
Code A n a l y z e r Program (S A P) (3 of 6)

3-22

MODULE LENGTH AND COMMENTING STATISTICS (GLOBAL)

e Total number of source 1 ines
e Maximum and average number of source lines per module

Total number of coded source lines
Maximum and average number of coded source lines per
Total number of comment lines
Maximum and average number of comment lines per modu
Maximum and average length o f prologue
Maximum and average number of embedded comments
Maximum and average number of in1 ine comments
Maximum and average number of b l a n k comment lines

*

.

module

e

e Maximum and average number of coded lines between comments

MODULE COMMUNICATIONS (GLOBAL)

e Total number of entry points
e Maximum and average number of entry points per module
e Total number of subroutine calls
e Maximum and average number of subrout i
e Total number o f function calls
e Maximum and average number of function
e Maximum and average number of external
e Maximum and average number of external

referenced

e c a l l s

c a l l s
names def
y defined

ned
modules

B Maximum and average number of arithmetic statement functions
(ASFs) defined

e Maximum and average number of references t o ASFs
e Maximum and average length of argument l i s t s i n references t o

subroutines and functions

STATEMENT BREAKDOWN (GLOBAL)

e Total number o f noncomment statements
e Number and percentage of executable statements

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (4 of 5)

3-23

D

STATEMENT BREAKDOWN (GLOBAL) (Cont ' d)

0

0

0

0

0

0

0

0

0

0

0

Number and percentage o f nonexecutable statements

Number and percentage o f assignment statements*

Number and percentage of c o n t r o l statements*
Number and percentage o f 1/0 statements*

Number and percentage o f format statements*

Number and percentage o f NAMELIST statements*

Number and percentage o f data statements*

Number and percentage o f s p e c i f i c a t i o n s statements*

Number and percentage o f statement f u n c t i o n d e f i n i t i o n s *

Number and percentage o f subprogram statements

Number and percentage o f o t h e r statements

Number and percentage o f undecoded statements**

*As de f ined by I B M 628-6515-9, I B M S/360 and S/370 FORTRAN-IV language
**Statements n o t decodabl e by SAP

CONTROL STATEMENT BREAKDOWN (GLOBAL)

0 Maximum and average number o f I F statements per module

0 Maximum and average number o f GO TO statements per module

0 Maximum and average number o f DO statements per module

0 Maximum and average l e v e l o f DO l oop nes t i ng

0 Maximum and average number o f statements per DO loop

ASSIGNMENT STATEMENT BREAKDOWN (GLOBAL)

0 Number o f assignment statements

0 Maximum and average number o f va r iab les per statement

0 Maximum and average number o f operators pe r statement

F i g u r e 3-10. S t a t i s t i c s From the FORTRAN S t a t i c Source
Code Analyzer Program (SAP) (5 of 6)

3-24

i
' J

SPECIFICATION STATEMENT BREAKDOWN (G L O B A L)

0 Maximum and average number of variables named per module
a Maximum and average number o f variables referenced i n

executable statements per modul e
0 Maximum and average number o f variable names referenced i n

COMMON statements per modul e
0 Maximum and average number of variable names referenced i n

EQUIVALENCE statements per modul e
a Maximum and average number of dimensions per a r ray
0 Maximum and average number o f characters in a variable name

SINGLE STATEMENT COMPLEXITY

0 Maximum and average subscript complexity (i . e . , number o f
operators and parentheses)

I
d

F i g u r e 3-10. S t a t i s t i c s From the FORTRAN S t a t i c Source
Code Analyzer Program (SAP) (6 of 6)

3-25

LLLLLLLLLLLLU o o u o w o o

rn
W
W
k
3
0
i,

Lo
03

J
u
I-
z

W
I-

Cm

a

Y
&

t;

lx
W

J
E?
a
2
-
W
U
M
3
0
v,

m
W
u w
P
M
m
01 L”

E
d -

3-26

c

N

W
0
a a

Mm La - L? 01 a 0 w-1
M

Q) u

0
m
2

w
-1

LL
- I-

Z
3
0
V

W
tn
=I

!-

z
h- cc
I3 W

5
Y z

>.
I- -
25
-1
a z:
0
V

a u m
3
m
m

w
ti
(1;
1
0 cn

W

a w
a

h
n
a z

3-27

:i

-I

*4

3 1

SECTION 4 - SEL DATA THAT CANNOT BE EXTRACTED
AUTOMATICALLY

Not all of the efforts expended during software development
can be accounted for via automated data collection. Thi's is
primarily due to the fact that these efforts cannot be quan-
tified or measured in any precise way. For example, during
the implementation of even some of the simplest algorithms,
false starts frequently can be made before a wqrkable solu-
tion is found (i.e., much of what is done is by trial and
error). Also, portions of a design may lend themselves to
easy solution, while others, because of constraints imposed
by the project or mission, may be very difficult to define.
The effort expended on these kinds of activities is not read-
ily available for measure.

This section lists and discusses some of the items of data
currently collected via the SEL software engineering forms
which cannot be collected automatically. Table 4-1 summar-
izes these types of data. The data generally fall into the
following categories:

Subjective data
e Manual processes
0 Valid other activities

4.1 SUBJECTIVE DATA

Much of the data collected from the SEL forms is subjective
in nature. For example, what constitutes a "good" run de-
pends on each individual's interpretation of what "good"
means. Another example is the use of the word "simple" to
describe software complexity. Those who understand a sec-
tion of software will tend to call the section "simple,"
whereas those who do not understand it may well call it
complex.

4 -1

Table 4-1.

SEL Form

Resource Summary

Run Analysis

Change Report

Component Status
Report

Data From the SEL Forms That Cannot
Be Automatically Extracted (1 of 3)

Data Item

Manpower hours*
Other charges
Percent of management

Run purpose

Reason for change
Effect
Effort
Type of change
Code reading
Activities used for program validation
Activities successful in detecting error
symptoms
Activities tried to find cause
Activities successful in finding cause
Time required to isolate the cause
When did error enter the system

Formal review
Design walk-through
Critical design reviews
Code reading
Valid other activities ($$xxxxxx indi-
cates form entry name):

Acceptance testing
Filling out the SEL forms
Meetings
Training
Travel (to and from GSFC)

Manpower hours might be obtained in the form of tapes such as
those used in the Manpower Allocation and Reporting System
(MARS) (Reference 14) or the Financial Reporting (FINREP) Pro-
gram (Reference 15).

*

Table 4-1. Data From the SEL Forms That Cannot
Be Automatically Extracted (2 of 3)

SEL Form Data Item

Component Status Valid other activities (Cont'd):
Report (Cont 'd) JCL development time

Overlay development time
System description development time
User's guide development time
Discussion with analysis personnel
($ $ANALYT 1
Block time ($$BLKTIM)
Discussion with other development
personnel ($$CONSUL)
Data generation ($$DATGEN)
Data set formats and maintanence
($ $ DATSET)
Demonstrations ($$DEMO)
Preparation'of task implementation
plan ($ $ IMPLAN)
Discussion with task personnel
($ $ INTEE? 1
Keypunching ($$KEYPCH)
Review.GESS, IBM, or other manual
($ $MANUAL 1
Write formal memoranda ($$MEMO)
Monthly Progress Report preparation
($ SMNTHLY)
Design notebook preparation
($ SNOTEBK)
Informal memos/instruction prepar-
ation ($$PAPERW)
Planning (not milestones) ($$PLANS)
Preparation for presentation
($$PRESNT)
Work on questions ($$QUESTS)
Review old software ($$ROSW)

S
4-3

Table 4-1. Data From the SEL Forms That Cannot
Be Automatically Extracted (3 of 3)

SEL Form Data Item

Component Status Valid other activities (Cont'd) :
Report (Cont'd) Review requirements/specifications

for design (SSRREQS)
Review standards/methodology

Prepare schedules (milestones)
($ SSCHEDL)
Attend seminar ($$SEMINR)
Simulation support ($ $ S I M)

Status meeting with management
($ $ STATUS)
Generate system tape ($$SYSTAP)
Perform system testing ($$SYSTST)
Write test plan (SSTESTPL)
Work on tool (not part of system)
($$TOOL)
Weekly Progress Report ($$WEEKLY)
Xeroxing (reproduction) ($$XEROX)

(SSRSTDS)

Project Summary
Report

Complexity (hard, easy, moderate)

4-4

These types of subjective conflicts point out the need for
better metrics by which to quantify and qualify the data
being collected. Given a measure of complexity expressed
in terms of simple structured properties (such as the number
or interactions between product and organizational elements),
normalized measures for programming effort, systems relia-
bility, productivity, and security can be devised, and mean-
ingful comparisons between different products or-methodologies
can be made. Without such measures, may of the essential
parts of the developing discipline remain unconnected and
easily misunderstood. Success in developing metrics will
provide a much needed measure of consistency in the results
obtained (see Reference 16).

4.2 MANUAL PROCESSES

Another important consideration is that certain aspects of
current software development are inherently manual or non-
automated processes. The following are examples of such
manual processes: design reviews, code reading, and meetings.
Activities such as these are categorically outside of the
realm of automation.

4.3 VALID OTHER ACTIVITIES

Items which are generally categorized as "valid other activ-
ities" (for the Component Status Report) also are not amena-
ble to automation. These include activities such as travel,
review of old software, review of design requirements, etc.
(see the data items for the Component Status Report in Table
4-11. However, these activities have a direct bearing and
impact on the costs and the success or failure of software
development projects, and they cannot be ignored.

IGiNAL PAGE I'
OE POOR QUALITY

4 -5

SECTION 5 - FUNCTIONAL REQUIREMENTS

This section gives some top-level functional requirements
for an online automated data collection system. Both oper-
ational considerations and the SEL hardware environment are
factors in these requirements.

5.1 OPERATIONAL CONSIDERATIONS

If the data collection system is to accurately measure the
true activity of the software development process, the act
of collecting data must not significantly interfere with
development activities. Also, the performance of the oper-
ating system as a whole must not be degraded by the data
collector. With this in mind, the major design goals of
the data collector are the following:

e Transparency--The user should not be aware that he
is being monitored or that data are being collected.

Efficiency--Both time and spade utilized must be
optimized.

0

The efficient use of time and space and the event monitoring
by the automated data collection system is discussed in the
following subsections.

5.1.1 TIME AND SPACE UTILIZATION

In general, there will be many events that will be monitored;
therefore, the time spent logging each event must be minimal.
Only the essential data should be collected, and it should
be possible to selectively monitor development projects.
Also, the data collection manager or system programmer must
be able to easily turn the collector on and o f f .

The space taken up by the data collector will have to be
minimized. It would not be feasible to develop a monitor
that would be so large that it wouldn't fit into core along
with the application it is to measure.

5-1

XI

Taking these factors into account, the SEL data collector
must be designed to take the significant information about
an event (e.g., its type, the time, data unique to the event)
and store it for subsequent analysis. Since some events,will
have more datgi associated with them than do others, the rec-
ords of the intermediate storage file should be variable in
length in order to conserve storage space.

5.1.2 EVENT MONITORING

The data collector must be capable of monitoring three classes
of events: resource use, logical interrupts, and flow of con-
trol. The specific items monitored will vary, depending on
the software development phase (e.g., requirements, design,
coding which is active for a given project.

The resources utilized by a user are perhaps the most easily
collectible items, since they are generally available in
some form through system accounting and resource utilization
procedures. Items such as CPU time, core usage, page frame
allocation and faulting, disk usage, 1/0 interrupts, etc,,
need only be extracted and stored.

However, routines that normally service an event must be
capable of calculating many of the other items of interest
directly or must call existing or newly developed software
engineering tools capable of deriving more detailed statistics
from some basic input source. Programs such as the FORTRAN
Static Source Code Analyzer Program (SAP) and the Multi-Level
Expression Design Language - Requirements (MEDL-R) (briefly
discussed in Sections 3.11 and 3 . 4 , respectively) are repre-
sentatives of this class of tools.

5.2 DATA COLLECTION IN THE SEL HARDWARE ENVIRONMENT

The SEL is a complex system environment in which a telecom-
munications network is attached to a computing complex con-
sisting of a DEC PDP-11/70 and VAX-11/780. The computing

environment is under control of the VAX/VMS and RSX-11M oper-
ating systems. User-written application programs execute
upon demand from local and remote interactive terminals.
Batch processing can also be performed concurrently.

Automated data collection in this environment requires both
a definition of purpose and a methodology which can be used
to accomplish that purpose. Considerations include the
overall SEL hardware environment, system performance, com-
puting workload, and transmission speed. Because of core
limitations on the PDP-11/70, space requirements in memory
and on disk are key constraints on the approach taken to
automated data collection.

The computers in the SEL environment, although developed by
the same manufacturer, have very distinct operating charac-
teristics and systems. Consequently, it may be necessary
to take entirely different approaches to data collection on
the two machines. This would be less desirable, however,
than a centralized data collection facility which would be
shareable between the computers through a network such as
DECnet (Reference 17). A network of this type would permit
synchronization of the system clocks and enable concurrent
data collection on the two machines with a single executive
controller. This feature is important because it would
minimize the amount of preprocessing of intermediate records
prior to their entry into the SEL data base.

5 . 3 SUMMARY

In developing a software engineering data collection system,
certain general requirements regarding the data collection
environment become evident. These are summarized below.

1. The act of collecting data must be transparent to
project being monitored.

5 - 3

3

.1

2.

3 .

4 .

5.

6.

7 .

8.

The act of establishing and activating data collec-
tion interfaces must be capable of being dynamic
(as well as static) and of being performed on any
ongoing process without logically interrupting that
process.

The data collection system must support the defini-
tion of event discriptors whose content defines the
conditions under which a recording of data is to be
made for later analysis. Such a descriptor might
contain the following:

a. Time
b. Project
c. Data and values
d. Level of collection

The data collection function must not be subjbct to
being disabled for that period of time for which
data collection is required for a given project.

The data collection system must support the acts of
event detection and recording of the captured data.
In a data-rich environment, the sharing of a physi-
cal resource must be transparent to an application
program (process).

The level of system support for the data collector
must be standardized across application systems and
across hardware/software systems (e.g., VAX, PDP,
IBM S/360).

The data collection terminology must be standardized
throughout the data collection environment.

The ability to logically save the most recently
recorded data prior to any purging of the data by
another process or subprocess in the system is nec-
essary.

5-4

9. Data identification must be provided to distinguish
data between projects. The identification of a col-
lected item must be monitored as part of the data
collection function.

10. There must be compatibility with the current SEL
data base. The automated data collection should
be considered to be an adjunct to the established
data base mechanism. The format of data cbllected
must be designed so that existing data base formats
continue to be satisfactory.

11. The data collector must be able to monitor both batch
and interactive processes.

12. Because of the high volume of data collected in an
automated environment, procedures for maintaining
the collected data prior to integration into the
SEL data base must be established.

13-. The ability to edit/purge selected portions of the
collected data must be provided.

14. Time tagging of data across projects is desirable
if the chronology of the collected data is of inter-
est. If data are time tagged, it will then be pos-
sible to develop a .decay function so that the most
recent data is not lost. This is essential if inter-
mediate storage for collected data is i n short supply.

15. Shared access by multiple processes of the intermed-
iate collection file(s) is essential, since it is
likely that several users for a given project will
be active concurrently. It may be necessary to
synchronize the accessibility to project files
(enqueue/dequeue) .

as
5-5 ITY

SECTION 6 - CONCLUSIONS AND RECOMMENDATIONS

Currently, the process of large-scale program development
and maintenance in the SEL is informal. Its costs are ,high
and its output is variable. However, it is essential to
study the process as it is evolving and to make organized,
quantized records of observations which familiarize the per-
ception of what is occurring. With such global statistics
(over the entire life cycle), it is hoped that specific
points or sources of trouble can be identified. Perhaps
areas of the development process which can be better under-
stood can also be identified. Only then can an attempt be
made to change the process without the risk of achieving
only local optimization.

In order to automatically collect statistics on software
development, it is essential that a higher degree of auto-
mated software development tools be developed which support
the entire software life cycle. Further, it is necessary
that formal software development procedures be established
and applied routinely to development efforts, The program-
mer workbench (discussed in Section 3 . 5) is a major step in
this area. Once formalized, the procedures become easier
to automate, and, therefore, data collection for all develop-
ment phases can be realized.

It is recommended that work be started to define and develop
tools which support the entire development life cycle. Spec-
ial attention should be given to the design phase, which is
by far the most difficult to represent in a computer and is
therefore the most difficult to automate. It is further
recommended that SEL-enriched accounting software be devel-
oped and coupled with revised software engineering forms
which address the desired subjective data.

6-1

It is not currently possible to automatically collect statis-
tics on all areas of software development, but much of the
overhead and cost related to data collection can be reduced.
By integrating data collection with a system which supports
the entire development process, more data of a higher quality
can be collected. It is hoped that this will provide a
clearer insight on how to develop quality software.

6-2

APPENDIX A - SAMPLE SEL SOFTWARE ENGINEERING FORMS

This appendix provides examples of the software engineering
forms currently in use in the SEL. They are given in the
following order:

1. General Project Summary form
2. Component Summary form
3 . Resource Sumnary form
4 . Component Status Report form
5. Computer Program Run Analysis form
6. Change Report form

E

b i
J

- i

k

GENERAL PROJECT SUMMARY

PROJECT NAME DATE

A PROJECT DESCRIPTION

Description

Form of Input
Requirements
Products Developed

Roductr Delivered

~

6. RESOURCES

Target Computer Systems
Constraints: Execution Time Size

Other
Any Problems in Meeting Constraints?

Development Computer System

Useful Items from Similar Projects:

C TIME

Start Date - End Date __ Estimated Lifetime ___ Mission Date -
Confidence Level

0. Cost

Cost 8 Maximum Available 0 Confidence Level
How Cost Determined
Personnel: Inception- 1/3 Way- 2/3 Way- Completion -

Total Perron Months
Other Costs: Computer T i m - (hrs) Documemtation $

Other L 1 Other (1

E. SIZE

Site of System - Words. - Data Words - Instructions
Maximum Space Available -Words. Confidence Level
Total Number of Source Statements: FORTRAN- ALC -
Structure of System (Check One):

Other 1

- Single Overlay - Overlay Structure (Number of Overlays - Avg. Size- 1
__ Independent Program (Number of Program- Avg. Size- 1

Define Your Concept of a Module

Number of Modules .- Range in Module Size: M ia - Max. - Avg.-
Number of Different IlO Formats ~ .

sa01 12/77)

Figure A-1, Genera l Project Summary Form (1 of 5)

F. COMPUTER ACCESS (Check All That Apply. Who Has Access to What)

1 Librarian Programmer -
K e y i n c a w Source Code I

Keying in Update of Source Code I
-
lndurion of Code Into Svstem I I

Librarian
76 Batch
% Interactive

Submitting Compilatiom
Module Testing
Integration Testing
Utility Rum (Tape Backup, Etc)

Programmer

rTop Down
Iterative Enhance.
Other:

G. TECHNIQUES EMPLOYED (Check All That Apply and Give Level at Which Used.)

1 Bottom Up I I
Hardest First I I
None Used I

Design:
Top Down Bottom Up
Iterative Enhance. Hardest First
Other: None Used

Simulating Construct 1 I Structured Code I I

Top Down (Stubs) Bottom Up (Drivers)
Other: Specification Driven
Structure Driven None

1

WeReading . I I Walk Through I I

H FORMALISMS USED

PDL I
I

I
I used I

- J
Flowcharts
Baseline Diag. (Tree (3.1
HOS
Functions

I Phases

Other:
Other:

I I I
I I I I

58Ol (2/77l Continuation

Figure A-1. General Project Summary Form (2 of 5)

A- 3

1. AUTOMATED TOOLS USED

Name I Phases in Which Used Level

J. ORGANIZATION

How are the Personnel Organized:

Rojed Personnel:

I K. STANDARDS

Type Optional Required
Title of Document

Type Optional Required
T i t le of Document

T w Optional Required
Title of Document

b e Optional Required
Title of Document

Type Optional Required
Title of Document

Type OptbMI Required
Title of Document

Type Optioml Required
Title of Document

T Y P ~ Optional Required
Title of Document

5801 12/77) Continuation

F i g u r e A-1. Genera l Pro jec t Summary Form (3 of 5)

A-4

L. MILESTONES

Phase Estimated Date Confidenca Level
How Determined
Reviewers
Reporting Rocedure
Resource Expenditures: Cost - Person Months- Computer Time - Ius.-

Size of System .- Confidence Level .~

Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Rocedui e
Resource Expenditures: Cost -, Person Months- Computer Time - hrs.

Size o f System ___ Confidence Level -
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost Person Months -. Computer Time .- hrr -

Sire of System ___ Confidence Level -
Phase Estimated Date Confidence Level
How Determined

~~ ~~

Reporting Rocedure
Resource Expenditures: Cost - Person Months - Computer Time - hrr

Size of System ___ Confidence Level -
Phase Estimated Data Confidence Level
How Determined
Reviewers
Reporting Procedure
Rwurce Expenditures: Cost Person Months - Computer Time - hrs. -

Size of System - Confidence Level -
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost - Perron Months ____ Computer Time - hrr -

Size of System ____ Confidence Level -
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Rocedure
Resource Expenditures: Cost ~, Person Months ___ Computer Time- hrs.

Size of System - Confidence Level

Phase Estimated Date Confidence Level -_
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost Person Months Computer Time hrs. ,-.

Size o f System - Confidence Level

80-1 12/77) Cantlnuatton

F i g u r e A-1. General Project Summary Form (4 of 5)

A- 5

M. DOCUMENTATION

P Pur- Type
Wimated Date Enimated Size .~ Tools Used

TYPS
Estimated Date

Type Purpose
Estimated Date Gtimated Size Tools Used

Typa Purpose
Estimated Date Estimated Size Tools Used

Type Purpose
Estimated Date Estimated Size Tools Used

Type Pur-
Estimated Date

Type Purpse

Estimated Date

.__ Purpose
Estimated Size- Tools Used

Gtimated Size . ~ , Tools Used

Estimated Size-, Tools Used

N. PROBLEMS

Statr the three most difficu!t p?rotz!ems you ppec? ? r ~ ezs'.ntc in completing the projc,", (1

1.

mort difficult)

2

3.

0. QUALITY ASSURANCE

State the three most important aspects of the design, development and testing of the svtem to which you attribute your
confidence in the completed system (1; most important)

2.

3.

PERSON FILLING OUT FORM

1801 (2177) Continuation

Figure A-1. General Project Summary Form (5 of 5)

A- 6

COMPONENT SUMMARY

FORM OF DESIGN

Functional

LEVEL OF DETAIL

Basic Block Stmt Other
Segment Component Subcomponent

Procedural 1 I

Number Calliciy This Component Names
Not Fully Specified - i

English I I I

Number Shared Items Names
Not Fully Specified __-

Number of Components Directly Descended from This Component Names --
Not Fully Specified -

I

C. PROGRAMMING LANGUAGES

Languages Used and Percentages (-1 (-1

Present Constraint

Memory Space
Execution Time
Other (1 I

Size: Source Statements (Including Comments) Machine Bytes

Useful Items From Similar Projects
Source Statements (Not Including Comments)

I I I I

CONSTRAINT PROBLEM EXPECTED: 1 Constraint 1 Component Meets

Figure A-2. Component Summary Form (1 of 2)

A- 7

“ 3

Runs Computer Time (min) Effort (hrsi

Design
Code
Test

i

Est. Comp!etion Date

--

F. I s this component independent of the existing components? Yes NO
If No, describe relation of this component to the existing system:

-inserted as a lower level elaboration of higher level components

-added as a driver or interface for existing components

-a redesign (to add new capability) of existing components

-a renaming of existing component

-regrouping of existing material from several components

(names)

(names)-

(names) -
(name)

(names)

Type of Addition:

-error correction
-planned enhancement
-implementation of requirements cnange - imorovement of clarity, maintainability. or documentation

-other (explain below)

G. ADDITIONAL COMMENTS

-improvement of user service
-utility for development piirposes only
-optimization of timeispaceiaccuracy
-adaptation to environment change

580-5 (6/78)

F i g u r e A-2. Component Smmary Form (2 of 2)

A- 8

RESOURCE SUMMARY

PROJECT - DATE

580-3 (6/78)

F i g u r e A - 3 . Resource Summary Form

A- 9

COMPONENT STATUS REPORT

I

PROJECT

PROGRAMMER

I

DATE

I I I I I

CODE DEVELOPMENT

I I I

Figure A-4. Component Status Report Form

A-10

A-11

NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

b l f the error was in design or implementation:

The error was a mistaken assumption about the value or sttucture of data

The error was a mistake in control logic or computation of an expression -

SECTION A - IDENTIFICATION

REASON: Why was the change made?

DESCRIPTION: What change was made?

EFFECT: What components (or documents) are changed? (Include version)

EFFORT: What additional components (or documents) were examined in determining what change was needed?

(Month Day Year)

E€B Need for change determined on. . . .
Change started on

What was the effort in person time required to understand and implement the change?

-1 hour or lea, -1 hour to 1 day, -1 day to 3 days, -more than 3 days

SECTION 6 - TYPE OF CHANGE (How is this change best characterized?)

0 Error correction 0 Inscrtion/deleA.r d 6 h g code

I 0 Planned enhancement 0 Optimization of timelspacelaccuracy

0 Implementation of requirements change

0 Improvement of clarity, maintainability. or documentation

0 Adaptation to environment change

0 @her [Explain in E)

0 Improvement of user services

Was more than one component affected by the change? Yes No

FOR ERROR CORRECTIONS ONLY

SECTION. C - TYPE OF ERROR (How is this error best characterized?)

0 Requirements incorrect or misinterpreted

0 Functional specifications incorrect or misinterpreted

0 Misunderstanding of external environment, ex=@ language .

0 Error in use of programming language/compiler

0 C h i d error

Other (Explain in E)

Design error, involving several components

Error in the design or implementation of a single component

II FOR DESIGN OR IMPLEMENTATlON ERRORS ONLY

Figure A-6. Change Report Form (1 of 2)

A-12

,

h

FOR ERROR CORRECTIONS ONLY

SECTION D - VALIDATION AND REPAIR

What activities were used to validate the program. detect the error, and find i t8 cause?

Dump
Cross-referencdattribte list
Proof technique
Other (Explain in E)

%at was the time used to isnl=+- tho cs~vse’

-one hour or less, -one hour to one day, -more than one day, -never found

If never found, was a workamund used?.-Yes-No (Explain in E)

Was this error related to a prqvivious chang?

-Yes (Change Report #/Date 1 -No -Can’t tell

When did the error enter the system?

-requirements -functional speu -design - d i n g and test -.other -can‘t tell

SECTlON E - ADDITIONAL INFORMATION

Please give any information that may be helpful in categorizing the mor or change. and understanding i ts cause and i ts
ramifications.

Name: Authorized: Date:

See2 (6/78)

F i g u r e A-6. Change Repor t Form (2 of 2)

A-13

REFERENCES

1. Basili, V. R., IEEE Computer Society, "Data Collection,
Validation and Analysis," Fall 1980

2. Computer Sciences Corporation, CSC/TM-81/6104, Th'e - Software Engineering Laboratory (Preliminary), D. N.
Card, September 1981

3 .

4 .

5.

6.

7.

8.

9.

10.

11.

12.

Teichrow, D. and E. A. Hershey, Classics in Software
Engineering, E. N. Yourdon (editor). New York:
Yourdon Press, 1979, pp. 389-407
Computer Sciences Corporation, CSC/TM-80/6093, Multi-
Level Expression Design Language - Requirements
(MEDL-R) System Evaluation, W. Decker, May 1980

-

University of Michigan (ISDOS Project, Department of
Industrial and Operations Engineering), ESD-TR-78-127,
Vol. I, User's Requirements Language (URL) User's
Manual: Fart I - Description, H6180/Multics/Version 3.2,
D. Teichrow, E. A. Hershy, and S. Spevak, March 1977
-- , ESD-TR-78-129, Vol. 11, User's Requirements Lan-
cruacre (URL) User's Manual: Part I1 - References. IBM/
570]MVS/TSO/Version 3.2,
and S. Spevak, March 1977

D. Teichrow, E. A. Hershy,'

-- , ESD-TR-78-130, Vol. I, User's Requirements Language
(URL) User's Manual: Part I - Description, H1680/
Multics/Version 3.3, D. Teichrow, E. A. Hershy, and
S. Spevak, July 1977
Computer Sciences Corporation, CSC/TM-81/6091, Software
Engineering Laboratory (SEL) Programmer Workbench
Phase I Evaluation, W. Decker, March 1981
Dolotta, T. A. and J. R. Mashay, Proceedings of the
2nd International Conference on Software Engineering,
"An Introduction to the Programmer's Workbench,"
October 1976
Computer Sciences Corporation, (notes on a program
under development), "Online Data Collection (ODC)
Tool," C. E. Goorevich, 1980
Freeman, P., IEEE Computer Society, "Tutorial on Soft-
ware Design Techniques: The Nature of Design," October

Computer Sciences Corporation, CSC/TM-79/6263, Evalu-
ation of the Caine, Faber, and Gordon Program Design
Language (PDL) in the Goddard Space Flight Center
(GSFC) Code 580 Software Development Environment,
W. Decker, September 1979

1976, pp. 35-63

R-1

REFERENCES (Cont 'd)

13. Computer Sciences Corporation, CSC/TM-79/6012, FORTRAN

14. -- , CSC/TM-77/6295, Manpower Allocation and Reporting
, S. Wafigora, October

1977
15. _- , CSC/SD-78/6033, Financial Report Generation Pro-

I

C. Rabbin, March 1978
16. Belady, .L. A. and M. M. Lehman, "A Model f o r Larqe

Program Development , I t IBM Systems Journal , 1976 , -
vol. 15, no. 3, pp. 225-227

17. Digital Equipment Corporation, AA-DgOlA-TE, DECnet-
VAX User's Guide, August 1978

R- 2

M

". i
RIBLIOGRAPHY OF SEL LITERATURE

:]

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W., and V. R. Basili, " A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering,
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R,, "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technoloqy,
January 1980, vol. 1

Basili, V. R,, "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R,,
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

Basili, V. R., and X. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, Februarv 1981, vol. 2, no. 1

Basili, V, R., and T, Phillips, "Evaluating and Comparing
Software Metrics in t h e Software Enqineerinq Laboratory,"
Proceedings of the ACM SIGMETRICS ,Symposium/Workshop: -Qual-
ity Metrics, March 1981

Basili, V, R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

O ~ I G I ~ A L PAGE IS
~ - 1 OF ~ 0 0 ~

R

1
i
1 . D

Rasifi, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop

and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Softwa're
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Enqineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

Basili, V. R., and M. V, Zelkowitz, "Measuring Software De-
velopment Characteristics in the Local Environment," 7 Com-
puters and Struc,tures, August 1978, vol. 10

Basili, V. R., and M. V, Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

Chen, E,, and M. V. Zelkowitz, "TJse of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Enqineering.
New York: Computer Societies Press, 1981

Church, V, E., "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., " A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SFL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S, F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
3.978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

B-2

National Aeronautics and Space Administration (NASA), - NASA
(proceedings), March

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 19'77

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R . W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A . , and C. E, Velez, "GSFC NAVPAK Design Higher
Order Lanauages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop,
August 1976

- - , SEL-77-001, The Software Engineering Laboratory,
V. R . Basili, M. V. Zelkowitz, F. E. McGarry, et al,, May
1977

-- , SEL-77-002, Proceedings From the Second Summer Software
Engineering Worksho?, September 1977

-- , SEL-77-003, Structured FORTRAN Preprocessor (S F O R T) ,
B. Chu, D. S. Wilson, and R. Beard, September 1977

-- , SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001

-- , SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E, En, O'Neill, S . R. Waligora, and
C. E, Goorevich, February 1978

-- , SEL-78-003, Evaluation of Draper NAVPAK Software Desiun,
K. Tasaki and F. E. McGarry, June 1978

B-3

,

-- , SEL-78-004,
PDP-11/70 User's
September 197 8

SEL-78-005

-

-- , SEL-78-007, Applicability of the Rayleigh Curve to the
SEL Environment, T. E. Mapp? December 1978

-- I SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V, Zelkowitz, July 1979

- - , SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K, Freburger and V. R, Basili, May 1979

-- , SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C, E. Goorevich,
S. R. Waligora, and A . L. Green, August 1979

-- , SEL-79-004, Evaluation of
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,
C. E, Gobrevich, A . L, Green, and F. E. McGarry, September
1979

-- , SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

-- , SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C, E. Goorevich,
and A . L, Green, February 1980

-- , SEL-80-002, Multi-Level Expression Design Lanquage-
Requirement Level (MEDL-R) Svstem Evaluation, W. J. Decker,
C. E, Goorevich, and A. L. Green, May 1980

-- , SEL-80-003,

et al., May 1980

-- , SEL-80-004, System Description and User's Guide for Code
, F. K, Banks, ., October 1980

-- , SEL-80-005, A,Study of the Musa Reliability Model,
A. M. Miller, November 1980 .

B-4

-- , SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F, E. McGarry, et al., September 1981

-- , SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

-- , SEL-81-003, Software Engineerinq Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D, C. Wyckoff, G. Page, et al,,
September 1981

-- , SEL-81-004, The Software Engineering Laboratory,
D, N. Card, F, E. McGarry, G, Paae, et al,, September 1981

-- , SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G, Page, et al., September 1981

-- , SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLLB) System Description and User's Guide,
W. Taylor. and W. J. Decker, December 1981

-- , SEL-81-007, Software Engineering Laboratory (SEL) Com-
endium of Tools, W, J, Decker, E, J. Smith, A. L, Green,

:t al,, February 1981

-- , SEL-81-008, Cost and Reliability Estimation Models
(CAREM) User's Guide, J. F. Cook and E. Edwards, February
1981

-- , SEL-81-009, Software Engineering Laboratory Proqrammer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F, E. McGarry, March 1981

-- , SEL-81-011,

--, SEL-81-012, Software Engineerinq Laboratory, G, 0.
Picasso, December 1981

-- , SEL-81-013, Proceedings From the Sixth Annual Software
Engineering Workshoe, December 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September'1981

Turner, C., G. Caron, and G. Brement, "NASA/SFL Data Compen-
dium," Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center f o r
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects19' Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility, I' Proceedings of the
Software Life Cycle Management Workshop, September 1977

B-6

